

Technical Assignment 1

October 5, 2006

AE 481W-5 ${ }^{\text {th }}$ Year Thesis
Pennsylvania State University
Faculty Advisor: Andres Lepage

Table Of Contents

Executive Summary. 3
Structural 4
Foundations 4
Floors 4
Columns 4
Lateral System 5
Codes. 5
Loads. 6
Spot Checks 9
Appendix. 10

Executive Summary:

The purpose of this paper is to understand the existing conditions and design procedures for Tower 333 in Bellevue, Washington.

Building Description:

Tower 333 is an 18 story office building on $333108^{\text {th }}$ Avenue in Bellevue Washington. The engineers decided to use a performance based lateral system, this allowed them to utilize the existing foundation and core of a previous project that was abandoned. This decision saved considerable time and money in the excavation and foundation process. Having highly transparent 10 foot high windows allows maximum light penetration and a view of the Lake Washington framed in the Olympic Mountains. This, coupled with state of the art operation systems, column free open plan and drought resistant vegetation located in the $1 / 2$ acre plaza qualifies it for LEED certification. The first floor will contain retail and professional services, while floors

Figure 1.1 Tower 333 Satellite Imagery 2-18 are designated for office use. In addition to the 18 levels above grade, Tower 333 contains 8 levels of below grade parking with the entrance on the lower mezzanine level.

Design Code:

IBC 2003 with reference to ASCE-7 ’02

I have used the current IBC 2005 which references ASCE-7 '05 for my calculations and design of Tower 333. The discrepancies between these two codes could account for some differences in sizes and loads attained. I also have used the Thirteenth Edition of the AISC Steel Construction Manual which could also account for design discrepancies between myself and the engineer. It is also worthy to note that in this report I used a simplified approach to attaining loads and might not have made all the full assumptions that the engineer had, thus resulting in smaller design sizes. In no way does this report make the claim that any of the designer's approaches, assumptions, calculations or resulting designs are incorrect or unsuitable.

Structural System:

Foundation:

Tower 333's foundation consists of a previous, abandoned building’s existing foundation. Plans indicate that sub levels 8-5 were completed before the project was abandoned. The existing foundation consists of spread concrete footings. Where designated, these footings were either demolished or partially demolished and replaced or thickened to provide higher capacity. Where the footings are reinforced, rebar was drilled and grouted into the bottom of the footings. The foundation supporting the concrete core shear walls is a mat slab foundation with a new topping applied to the existing mat.

Floor System:

The sublevel floor systems from P8-P2 are a 7-1/2 inch, 2-way post-tensioned concrete slab with an $\mathrm{f}^{\prime} \mathrm{c}=5,500$ psi. Parking Level 1 has a one way concrete slab varying in thickness from 10-12" with \#5 bars in the bottom of the slab and \#6 in the top with an f'c of 5,000 psi. Supporting the one way slab are $48 x 27$ concrete girders, f^{\prime} c $=5,000 \mathrm{psi}$, spanning 55'-10" in the N-S direction of a typical bay. The upper floors are a 2-1/2 inch concrete slab on a 3 inch deep metal composite deck with an f'c of 4,000psi and WWF $6 x 6$ W3.5xW3.5 reinforcing. Supporting the slab are W18x40 beams which span 42 feet N -S in a typical bay. The beams frame into girders on the interior which are typically W18x97 spanning E-W while beams framing into girders on the exterior of the bays are either W18x40 or specialized moment frames.

Columns:

Columns on the sublevels are concrete with an $\mathrm{f}^{\prime} \mathrm{c}=8,000 \mathrm{psi}$. A typical column size is 2'x2' with (12) \# 8 bars tied with \#5 at either 4" or 6" spacing. Columns on the north and south exterior are 3 ' $x 3$ ' with (16) \#18 bars and \#5 ties spaced 4" and 6".

The columns beginning at the mezzanine level are rolled W14 shapes with an Fy of 50ksi and continue to the full height of 260 ft to the top of the building. The typical gravity columns range in size from a $\mathrm{W} 14 \times 53$ to a $\mathrm{W} 14 \times 500$. At the moment frame locations the columns range in size from W14x132 to a W14x730. Both gravity and moment frame columns are spliced every 28feet at mid floor. The maximum unbraced length is $13^{\prime}-10$ " which is the typical floor to floor height of one floor.

Lateral Framing:

There is a dual, performance-based lateral system implemented in Tower 333 consisting of special moment frames at selected locations on the exterior walls and a centralized core of special shear walls. It is assumed that the moment frame is capable of taking at least 25 percent of the seismic lateral loads. The columns are welded with $3 / 4$ inch fillet welds to $\mathrm{L} 4 \times 4 \times 5 / 8$ angles on each side which are then welded to the base plates with $3 / 4$ inch fillet welds. Typical base plates are $3-1 / 2 \times 26 \times 32$ for a three-bayed frame and 3$1 / 2 \times 32 \times 32$ for a two-bayed frame. Kicker braces are also applied to the moment frame beams where they are not braced by incoming floor beams.

The core concrete shear walls are 2feet thick with a length of 40feet in the North-South direction and 32 feet long with 5feet openings for elevator access in the E-W direction. The bearing capacity of the concrete is $\mathrm{f}^{\prime} \mathrm{c}=9,000$ psi with two curtains of \#7 rebar at 12 inch spacing and $\# 5$ hoops and ties at 6 inch spacing.

Codes:

Building Code:

International Building Code (IBC), 2003 edition

Structural Concrete:

American Concrete Institute (ACI) 2003 edition

Steel Design:

American Institute of Steel Construction LRFD (AISC), 1999 edition
AISC Seismic Provisions 2002 edition
AISC Specification of Structural Joints 2000 edition

Building Design Loads:

American Society of Civil Engineers (ASCE-7) 2002 edition

Loads:

Dead Loads:

Metal Deck + Normal Weight Concrete Steel Beams

Superimposed Dead Loads:

Office:
Mechanical/Electrical/Sprinkler
Partitions
Lobby/Circulation:
Mechanical/Electrical/Sprinkler
Partitions:
Built-Up Slabs:
Pavers, Topping Slabs:
Retail/Restaurant:
Mechanical/Electrical/Sprinkler 15 PSF
Plaza \& Vegetation:
Mechanical/Electrical/Sprinkler
Finishes/Waterproofing
Soil/Plantings
Parking:
Mechanical/Electrical/Sprinkler
Roof:
Mechanical/Electrical/Sprinkler

Live Loads

Office:
Lobby:
Retail/Restaurant:
Plaza (Assembly):
Parking:
Roof (live load or snow):

15 PSF
15 PSF
150 PSF (where applicable)
5 PSF
15 PSF
50 PSF (Vulcraft Catalog)
Varies AISC

ASCE-7

5 PSF
20 PSF
15 PSF
20 PSF
75 PSF (where applicable)
35 PSF (where applicable)

ASCE-7 Chapter 4
50 PSF
100 PSF (NR)
100 PSF (NR)
100 PSF (NR)
50 PSF
25 PSF

Lateral Loads:

Wind:
In accordance with ASCE-7 Chapter 6
The wind pressures and loads shown below are for a flexible building with an exposure category B.

Pressure				
Wind From N-S				
Windward		Leeward		Total
h (ft)	P (psf)	h (ft)	P (psf)	
0-15	9.70	0-15	-10.06	19.76
20	10.23	20	-10.06	20.28
25	10.65	25	-10.06	20.71
30	11.07	30	-10.06	21.13
40	11.71	40	-10.06	21.76
50	12.24	50	-10.06	22.29
60	12.66	60	-10.06	22.71
70	13.08	70	-10.06	23.14
80	13.50	80	-10.06	23.56
90	13.82	90	-10.06	23.88
100	14.14	100	-10.06	24.19
120	14.67	120	-10.06	24.72
140	15.19	140	-10.06	25.25
160	15.62	160	-10.06	25.67
180	16.04	180	-10.06	26.10
200	16.36	200	-10.06	26.41
250	17.20	250	-10.06	27.26
267	17.41	267	-10.06	27.47
Wind From E-W				
Windward		Leeward		Total
h (ft)	P (psf)	h (ft)	P (psf)	
0-15	9.77	0-15	-10.22	19.99
20	10.31	20	-10.22	20.53
25	10.73	25	-10.22	20.95
30	11.16	30	-10.22	21.38
40	11.80	40	-10.22	22.02
50	12.34	50	-10.22	22.56
60	12.77	60	-10.22	22.98
70	13.19	70	-10.22	23.41
80	13.62	80	-10.22	23.84
90	13.94	90	-10.22	24.16
100	14.26	100	-10.22	24.48
120	14.80	120	-10.22	25.02
140	15.33	140	-10.22	25.55
160	15.76	160	-10.22	25.98
180	16.19	180	-10.22	26.41
200	16.51	200	-10.22	26.73
250	17.36	250	-10.22	27.58
267	17.58	267	-10.22	27.80

Table 3.1 Wind Pressures
Wind cont.:

Total Base Shear:

N-S Direction: 1365 kips
E-W Direction: 807 kips

Total Overturning Moment:

N-S Direction: 195,908 ft-kips
E-W Direction: 115,039 ft-kips

Seismic Load:

Although this building is located in a seismic sensitive region, with a site class designation C and a seismic design category designation D , the simplified analysis was approached in this report to confirm that seismic loading will be the controlling load.
Once this is confirmed, a further and more in-depth analysis will be done at a later time.

Seismic Loading						
$\mathrm{V}=1774$						
K=1.4	Level	$\mathbf{w}_{\mathbf{x}}$	h_{x}	$\mathrm{w}_{\mathrm{x}} \mathrm{h}^{1.4}$	$\mathrm{C}_{\mathrm{vx}}(\mathrm{k})$	Fx (k)
Roof	20	156	267.61	390506.1	0.008	14.57
Penthouse	19	2490	253.78	5786816.3	0.122	215.94
Office	18	2490	239.95	5350180.1	0.113	199.65
Office	17	2490	226.12	4923499.7	0.104	183.73
Office	16	2490	212.29	4507136.4	0.095	168.19
Office	15	2490	198.46	4101488.8	0.086	153.05
Office	14	2490	184.63	3706999.5	0.078	138.33
Office	13	2490	170.8	3324163.4	0.070	124.04
Office	12	2490	156.97	2953538.7	0.062	110.21
Office	11	2490	143.14	2595761.4	0.055	96.86
Office	10	2490	129.31	2251564.0	0.047	84.02
Office	9	2490	115.48	1921802.8	0.040	71.71
Office	8	2490	101.65	1607495.2	0.034	59.99
Office	7	2490	87.82	1309875.9	0.028	48.88
Office	6	2490	73.99	1030484.8	0.022	38.45
Office	5	2490	60.16	771312.4	0.016	28.78
Office	4	2490	46.33	535065.0	0.011	19.97
Office	3	2490	32.5	325713.7	0.007	12.15
Office	2	2432	18.67	146408.3	0.003	5.46
Lobby	1	3442	0	0	0	0

Table 3.2 Seismic Distribution of Forces
Total Base Shear: 1774 kips
Total Overturning Moment:327,640 ft-kips

Other Loads:

The foundation and walls of Tower 333 drop 93 feet below grade, with soil nailing of the exterior walls below grade. However, soil loads, lateral pressures created by the adjacent soil and snow loads (ASCE-7 Chapter 7) are not covered in the scope of this report.

Spot Checks:

Upon conclusion of my calculations, I discovered a few discrepancies between the design values and sizes I computer and those of the design engineer's. There are several possibilities as to the cause of this.

The first discrepancy I encountered was the value of the total seismic shear force. I produced a result of only 70% of what the total shear force as calculated by the engineer is. My first assumption as to why this occurred is that I did not account for all the dead load in the structure. With 8 levels of structure below grade, at least 2 of which are semi exposed due to the parking garage entrance and the fact that the core shear walls extend all the way to the mat foundation on grade it is possible that the engineer included the dead weight of the garage into his calculations. This is an assumption I did not make. With these 8 levels of parking included, that would add roughly an additional 40% of dead weight to the building. Making a rough estimate calculation and taking 140% of my resulting seismic shear value, I get a value that comes within 2% of the engineer's. Another reason could be the fact that I used a simplified approach for my initial seismic loads, whereas the engineer uses the modal response spectrum analysis (ASCE-7 '02 Section 9.5.6).

Another discrepancy discovered was the column size I achieved as compared to the engineers. Having calculated a smaller W shaper in my analysis, it is again possible my simplified approach did not account for all the loading and loading conditions that the engineer assumed. Differences in the codes and design manuals could also account for differences in sizes.

Other structural elements that I still need to check are a modal response spectrum analysis of my seismic forces, foundations and moment frame. Due to seismic being the controlling lateral force and the fact that I have a seismic category D, I will need to do a more detailed analysis to determine a more accurate shear force. Also, due to the deep level of excavation, I will need to check my foundation and external concrete walls for soil pressure capacity. In regards to the moment frames, once the percentage of lateral forces distributed to the moment frames is known, I will need to check member sizes.

APPENDIX

Values obtained from ASC Building Information	
Exposure:	B
V (mph)	85
Importance	11
1	1
Kd	0.85
Kzt	1
h (ft)	260
Enclosure:	Enclosed
$\boldsymbol{\alpha}$	7
Zg (ft)	1200
Zmin (ft)	30
c	0.3
â	0.143
b hat	0.84
α bar	0.25
l(ft)	320
€ bar	0.33
b bar	0.45

Flexible Building	Pressure Coefficients:
$\mathbf{g}_{\mathrm{R}} \quad 4.13$	Internal
$\mathbf{g}_{\mathbf{Q}} \boldsymbol{\&} \mathbf{g}_{\mathbf{v}} \quad 3.40$	Gcpi 0.18
$\mathbf{R}_{\mathbf{n}} \quad 0.049$	0.18
$\mathbf{R}_{\mathbf{h}} \quad 0.097$	External
$\begin{array}{ll}\mathrm{n}_{1} & 0.77\end{array}$	Windward
$\boldsymbol{\eta}_{\text {h }} \quad 9.80$	Cp 0.8
$\mathbf{V}_{\mathbf{z}} \quad 94.0$	Leeward
B 0.05	N-S---Cp -0.5
Wind from N-S	
$\boldsymbol{\eta}_{\text {B }} \quad 8.06$	E-W---Cp 0.36
15.9	Period
$\mathbf{R}_{\mathbf{B}} \quad 0.12$	$\mathrm{C}_{\mathrm{t}} \quad 0.02$
$\mathbf{R}_{\mathbf{L}} 0.06$	x 0.75
Q 0.83	$\mathbf{h}_{\text {((ft) }} \quad 260$
R 0.08	Ta 1.3
Gf 0.84	Nat. Freq: $\mathbf{n}_{1(\mathrm{hz})} \quad 0.77$
Wind from E-W	
$\boldsymbol{\eta}_{\text {B }} \quad 4.75$	
$\boldsymbol{\eta}_{\mathbf{L}} \quad 27.00$	
$\mathbf{R}_{\text {B }} \quad 0.19$	
$\mathbf{R}_{\mathbf{L}} 0.04$	
Q 0.85	
R 0.10	
Gf 0.85	

$\mathbf{K}_{\mathbf{z}} \& q_{\mathbf{z}}$		
\mathbf{z}		
$\mathbf{(f t)}$	$\mathbf{K z}$	$\mathbf{q z}$
$0-15$	0.57	8.96
20	0.62	9.75
25	0.66	10.38
30	0.70	11.01
40	0.76	11.95
50	0.81	12.73
60	0.85	13.36
70	0.89	13.99
80	0.93	14.62
90	0.96	15.09
100	0.99	15.56
120	1.04	16.35
140	1.09	17.14
160	1.13	17.77
180	1.17	18.39
200	1.20	18.87
250	1.28	20.12
267	1.30	20.44

Pressure				
Wind From N-S				
Windward		Leeward		Total
h (ft)	P (psf)	h (ft)	P (psf)	
0-15	9.70	0-15	-10.06	19.76
20	10.23	20	-10.06	20.28
25	10.65	25	-10.06	20.71
30	11.07	30	-10.06	21.13
40	11.71	40	-10.06	21.76
50	12.24	50	-10.06	22.29
60	12.66	60	-10.06	22.71
70	13.08	70	-10.06	23.14
80	13.50	80	-10.06	23.56
90	13.82	90	-10.06	23.88
100	14.14	100	-10.06	24.19
120	14.67	120	-10.06	24.72
140	15.19	140	-10.06	25.25
160	15.62	160	-10.06	25.67
180	16.04	180	-10.06	26.10
200	16.36	200	-10.06	26.41
250	17.20	250	-10.06	27.26
267	17.41	267	-10.06	27.47
Wind From E-W				
Windward		Leeward		Total
h (ft)	P (psf)	h (ft)	P (psf)	
0-15	9.77	0-15	-10.22	19.99
20	10.31	20	-10.22	20.53
25	10.73	25	-10.22	20.95
30	11.16	30	-10.22	21.38
40	11.80	40	-10.22	22.02
50	12.34	50	-10.22	22.56
60	12.77	60	-10.22	22.98
70	13.19	70	-10.22	23.41
80	13.62	80	-10.22	23.84
90	13.94	90	-10.22	24.16
100	14.26	100	-10.22	24.48
120	14.80	120	-10.22	25.02
140	15.33	140	-10.22	25.55
160	15.76	160	-10.22	25.98
180	16.19	180	-10.22	26.41
200	16.51	200	-10.22	26.73
250	17.36	250	-10.22	27.58
267	17.58	267	-10.22	27.80

			Wind from N-S					
Floor	Height (Ft)	Trib. Height (Ft)	Windward (PSF)	Leeward (PSF)	$\begin{aligned} & \text { Total } \\ & \text { (PSF) } \end{aligned}$	Story Force (Kip)	Total Shear (Kip)	Overturning Moment (Ft-Kip)
1 (ground)	0	0	0	0	0	0	1365.32	195908.2
2	18.67	16.25	10.23	-10.06	20.29	70.56	1365.32	1317.3
3	32.5	13.83	11.71	-10.06	21.77	64.43	1294.76	2094.0
4	46.33	13.83	12.24	-10.06	22.3	66.00	1230.33	3057.8
5	60.167	13.83	12.66	-10.06	22.72	67.24	1164.33	4045.8
6	74	13.83	13.5	-10.06	23.56	69.73	1097.09	5159.9
7	87.83	13.83	13.82	-10.06	23.88	70.68	1027.36	6207.4
8	101.67	13.83	14.67	-10.06	24.73	73.19	956.68	7441.4
9	115.5	13.83	14.67	-10.06	24.73	73.19	883.49	8453.6
10	129.33	13.83	15.19	-10.06	25.25	74.73	810.30	9664.9
11	143.167	13.83	15.62	-10.06	25.68	76.00	735.57	10881.1
12	157	13.83	15.62	-10.06	25.68	76.00	659.57	11932.5
13	170.833	13.83	16.04	-10.06	26.1	77.25	583.56	13196.2
14	184.66	13.83	16.36	-10.06	26.42	78.19	506.32	14439.1
15	198.5	13.83	16.36	-10.06	26.42	78.19	428.13	15521.3
16	212.33	13.83	17.2	-10.06	27.26	80.68	349.93	17130.6
17	226.167	13.83	17.2	-10.06	27.26	80.68	269.25	18247.0
18	240	13.83	17.2	-10.06	27.26	80.68	188.57	19363.0
Pent	253.833	13.83	17.41	-10.06	27.47	81.30	107.89	20636.8
Roof	267.67	13.83	17.41	-10.06	27.47	26.59	26.59	7118.3

Floor	Height (Ft)	Trib. Height (Ft)	Windward (PSF)	Leeward (PSF)	$\begin{aligned} & \text { Total } \\ & \text { (PSF) } \end{aligned}$	Wind From E-V Story Force (Kip)	Total Shear (Kip)	Overturning Moment (Ft-Kip)
1 (ground)	0	0	0	0	0	0	807.11	115038.9
2	18.67	16.25	10.31	-10.22	20.53	42.04	807.11	784.8
3	32.5	13.83	11.8	-10.22	22.02	38.37	765.07	1247.1
4	46.33	13.83	12.34	-10.22	22.56	39.31	726.70	1821.4
5	60.167	13.83	12.77	-10.22	22.99	40.06	687.39	2410.4
6	74	13.83	13.62	-10.22	23.84	41.54	647.33	3074.2
7	87.83	13.83	13.94	-10.22	24.16	42.10	605.78	3697.7
8	101.67	13.83	14.8	-10.22	25.02	43.60	563.68	4432.7
9	115.5	13.83	14.8	-10.22	25.02	43.60	520.08	5035.7
10	129.33	13.83	15.33	-10.22	25.55	44.52	476.48	5758.1
11	143.167	13.83	15.76	-10.22	25.98	45.27	431.96	6481.5
12	157	13.83	15.76	-10.22	25.98	45.27	386.69	7107.7
13	170.833	13.83	16.19	-10.22	26.41	46.02	341.42	7862.0
14	184.66	13.83	16.51	-10.22	26.73	46.58	295.39	8601.3
15	198.5	13.83	16.51	-10.22	26.73	46.58	248.82	9246.0
16	212.33	13.83	17.36	-10.22	27.58	48.06	202.24	10204.7
17	226.167	13.83	17.36	-10.22	27.58	48.06	154.18	10869.7
18	240	13.83	17.36	-10.22	27.58	48.06	106.12	11534.5
Pent	253.833	13.83	17.58	-10.22	27.8	48.44	58.06	12296.6
Roof	267.67	13.83	17.58	-10.22	27.8	9.61	9.61	2572.8

Seismic Loading						
$\mathrm{V}=1774$						
K=1.4	Level	w_{x}	h_{x}	$\mathrm{w}_{\mathrm{x}} \mathrm{h}^{1.4}$	$\mathrm{C}_{\mathrm{vx}}(\mathrm{k})$	Fx (k)
Roof	20	156	267.61	390506.1	0.008	14.57
Penthouse	19	2490	253.78	5786816.3	0.122	215.94
Office	18	2490	239.95	5350180.1	0.113	199.65
Office	17	2490	226.12	4923499.7	0.104	183.73
Office	16	2490	212.29	4507136.4	0.095	168.19
Office	15	2490	198.46	4101488.8	0.086	153.05
Office	14	2490	184.63	3706999.5	0.078	138.33
Office	13	2490	170.8	3324163.4	0.070	124.04
Office	12	2490	156.97	2953538.7	0.062	110.21
Office	11	2490	143.14	2595761.4	0.055	96.86
Office	10	2490	129.31	2251564.0	0.047	84.02
Office	9	2490	115.48	1921802.8	0.040	71.71
Office	8	2490	101.65	1607495.2	0.034	59.99
Office	7	2490	87.82	1309875.9	0.028	48.88
Office	6	2490	73.99	1030484.8	0.022	38.45
Office	5	2490	60.16	771312.4	0.016	28.78
Office	4	2490	46.33	535065.0	0.011	19.97
Office	3	2490	32.5	325713.7	0.007	12.15
Office	2	2432	18.67	146408.3	0.003	5.46
Lobby	1	3442	0	0	0	0
Total		48360		47539813	1.000	1774.00
Total Base Shear			1774.00			
Total Overturning Moment			327658			

Seismic Design Values:

Location:	Bellevue, Washington
Number of Floors:	18
Height:	260 feet
Site Class:	C
Occupancy:	II
Seismic Category:	D
Importance Factor:	1.0

Seismic Design Values Cont..

R:	8	$\mathbf{S}_{\mathbf{s}}$:	1.356
		S_{1} :	. 615
		F_{a} :	1.0
K:	1.4	$\mathrm{C}_{\text {s }}$:	1.341
T_{L} :	6	S_{M1} :	
T_{a} :	1.3	S_{DS} :	. 904
		$\mathrm{S}_{\mathrm{D} 1}$:	. 410

Dead Loads:

	Slab \& Deck	Beams	SDL	Total
Ground:				
section PL:	50 PSF	4-6 PSF	180 PSF	232 PSF
section P:	50 PSF	4-13 PSF	30 PSF	84-93 PSF
section D:	50 PSF	3-9 PSF	15 PSF	68-74 PSF
section E:	50 PSF	3-9 PSF	35 PSF	88-94 PSF
2:	50 PSF	4-8 PSF	25 PSF	79-83 PSF
3-18	50 PSF	4-8 PSF	25 PSF	79-83 PSF
Roof:	50 PSF	4-8 PSF	25 PSF	79-83 PSF

$$
\begin{array}{lc}
f_{y}=50 \mathrm{ksi} \\
f_{c}^{\prime}=4000 \text { psi } & \text { Assume } a=1^{\prime \prime} \\
\text { bess }^{\prime \prime}=10^{\prime}-8^{\prime \prime}=128^{\prime \prime} \quad \text { or } \frac{42^{\prime}(12)}{4}=126^{\prime \prime} \\
& y_{2}=\left(5.5^{\prime \prime}\right)-\frac{1^{\prime \prime}}{2}=5^{\prime \prime}
\end{array}
$$

$$
\text { B1- CONT. } \angle R F D \text { TABCE 3-19 }
$$

$$
\begin{aligned}
& \text { TRP } \omega_{18 \times 35} \quad \text { (a) } I_{2}=5 \text { \&.PNA OTFL } \varnothing M_{n}=535>348 \text { VK } \\
& \text { Wi. } \sum Q_{n}=515^{k} \\
& \text { Check Assumprion } a=1.0^{\prime \prime} \\
& a=\frac{515^{k}}{.85(4000 \text { Psi })\left(126^{\circ}\right)}=1.2 \quad \therefore \text { No Goors } \\
& \text { PNA(9) BFL } \Rightarrow E Q_{n}=260^{\mathrm{K}} \quad \phi m_{n}=435>3480^{\circ} \mathrm{K} \\
& a=\frac{260^{1}}{.85(4)\left(126^{11}\right)}=.61 \underline{012} \\
& Y_{2}=5.5-\frac{.64}{2}=5.2 \text { ok } \\
& \text { ASSOME SHEAR STUD HORD } 21^{k} \\
& E Q_{n}=260^{\circ} \rightarrow \text { OF STODS: } 13 \text { PERSCDE } \\
& \text { TOT स OF. STUDS } 2(13)=26 \\
& \text { USE } \omega 18 \times 35 \quad \omega / 26 \text { STUDS } \\
& \text { BEAM SPECIFIED W18×40 } \\
& \text { CONCLUSTON: LOAD ASSUMPTIONS YIELD RESOLTS } \\
& \begin{array}{l}
\text { CLOSE \& REASOWABLE TO DESLGNER'S } \\
\text { THEPE TOR VALID. }
\end{array}
\end{aligned}
$$

	SPOT CHECK P9 Of
	S.W. 1 conn. TRY \#5 (2) $10^{\prime \prime}$ SPACING FOR BOTH DIREC. Nominal Shear: ACI 21.7.4.1

